Sustainable & Safer Materials

Non-animal methods (NAMs) for toxicity testing

Dr. Peter A. Behnisch **BioDetection Systems, Amsterdam**

Pesticides **Dioxins PCBs** Green Toxicolog Automated & Robotic Araben free Mixture toxicity EATS

BDS

- **1** Challenges in Safety of (recycled) Materials
- 2 Identifying and assessing chemicals of concern
- 3 Non-animal methods (NAM) for toxicity testing of plastics in the circular economy
- 4 Toxicological profiling of materials additives (such as BPA, phthalates and PFAS)
- 5 Building and implementing strategies with the industry, the government, and NGOs
- 6 International strategies for safer life cycle assessment LCA (UNEP 2024)

1 - The Challenges in Materials Safety

2 - Identifying and assessing chemicals of concern

Phthalates, mineral oils, PFAS, EDCs, PAAs, PFCs, photoinitiators, BPA...

3 - Non-animal methods (NAM) for toxicity testing of plastics in the circular economy

Bioactive Food Pollutants	HTPS CALUX	Pathway
C- and N-Dioxins PXDD/Fs, dl-PXBs (X= Cl, Br, F, methyl)	DR CALUX	Dioxin receptor
Carcinogenic PAHs (such as Benzo(a)pyrene)	PAH CALUX	Dioxin receptor
Estrogens, EDCs, Bisphenol A, Phthalates, Pesticides, Pharmaceuticals, cosmetics	ER CALUX	Estrogen receptor mix
Androgens, EDCs, Bisphenol A, Pesticides, Pharmaceuticals	AR CALUX	Androgen receptor
Progestins, EDCs, Anti-babypill, Pesticides, Pharmaceuticals	PR CALUX	Progesterone receptor
Glucocorticoids, EDCs, Asthma spray, Immune-suppressive agents	GR CALUX	Glucocorticoid receptor
Thyroid hormones, EDCs, Brominated flame retardants	TR CALUX	Thyroid receptor
Retinoids, Pesticides, Pharmaceuticals	RAR CALUX	Retinoic acid receptor
Obesogens, fluorinated compounds PFAAs, Anti-diabetic pharmaceuticals	PPARgamma CALUX	Peroxisome proliferatorY1 receptor
Obesogens, fluorinated compounds PFAAs, Anti-diabetic pharmaceuticals	PPARalpha CALUX	Peroxisome proliferator α receptor
Pro-inflammatory cytokines	NFkappaB CALUX	NFkappaB activation
Cytotoxic/static agents, Genotoxic compounds like PAHs, Pharmaceuticals, dyes	p21 CALUX	p21 activation
Cytotoxic/static agents, Genotoxic compounds like PAHs, Pharmaceuticals, dyes	p53 CALUX	p53 transcriptional activity
Electrophiles, oxidative stress, heavy metals	Nrf2 CALUX	Nrf2 transcriptional activity
β -Catenin/ involved in development and carcinogenesis	TCF	TCF transcriptional activity
Carcinogens, UV	AP1 CALUX	AP1 transcriptional activity
Hypoxia-mediated angiogenesis	HIF1alpha CALUX	$HIF1\alpha$ transcriptional activity
Endoplasmatic reticulum stressors	ER stress CALUX	XBP1 transcriptional activity
Cytotoxic agents, Non-specific luciferase modulators	Cytox CALUX	Constitutive transcriptional activity

High-through-put screening (HTPS) - human cell-based TOX

BDS laboratory (Amsterdam)

HTPS cell handling equipment

Microlab (Hamilton) Luminometer

4 - Toxicological profiling of materials additives (such as BPA & phthalates)

Public concern about safety of consumer products

Researchers tested 19 baby bottles purchased in nine

ISO 19040-3: Hormone-like activities of plastic additives by ER CALUX

Water quality — Determination of the estrogenic potential of water and waste water — Part 3: In vitro human cellbased reporter gene assay (ISO 19040-3:2018)

Verbindung	U2OS-ERα	Literatur	Τ47Dαβ	Literatur
17β-Estradiol	1		1	
17 <i>a</i> -Ethinylestradiol	1,3 bis 1,5	[10] [11] [25]	1,2	[12] [14] [15]
17α-Estradiol	0,1	[10] [11] [16]	0,016	[12] [14] [15]
Estron	0,02	[10] [11] [16]	0,056	[12] [14] [15]
4-Nonylphenol	5,9E-04	[10] [11]	2,3E-05	[12] [14] [15]
Dimethylphtalat			1,1E-05	[12] [14] [15]
Genistein	1,1E-04	[11]	6,0E-05	[12] [14]
o,p-DDT	1,9E-05	[11]	9,1E-06	[12] [14]
Methoxychlor	1,8E-06	[11]	1,0E-06	[12] [14]
Bisphenol A			7,8E-06	[12] [14] [15]
Nonylphenolethoxylat			3,8E-06	[12] [14] [15]
4-Octylphenol			1,4E-06	[12] [14] [15]
Diethylphtalat			3,2E-08	[12] [14] [15]
Di-n-butylphthalat			1,8E-08	[12] [14] [15]
Equol	7,6E-04	[10] [11]		
Norethynodrel	0,015	[10]		
Di(2-ethylhexyl)phthalat			> 6,0E-07	[12] [14] [15]
Estriol	0,017	[11]		

Tabelle D.1 — Zusammenfassung relativer Potenzen (P_r) im Vergleich zu 17β-Estradiol für ausgewählte Verbindungen

5 - Building and implementing strategies with the industry: e.g. AkzoNobel

pubs.acs.org/journal/ascecg

Letter

Novel Biobased Furanic Diols as Potential Alternatives to BPA: Synthesis and Endocrine Activity Screening

Catherine A. Sutton, Alexander Polykarpov, Keimpe Jan van den Berg, Alexander Yahkind, Linda J. Lea, Dean C. Webster,* and Mukund P. Sibi*

KEYWORDS: Furanic diols, Bisphenol A replacement, Biomass, 5-Hydroxymethyl furfural, Endocrine activity

Table 1. Endocrine Activity of Asymmetric Furanic Diols vs BPA^a

Entry	ER- α -CALUX ^b	AR CALUX ^b	Anti-AR CALUX ^c	Anti-TR β -CALUX ^c	
BPA	0.075	ND	0.013	27	
3	NA	NA	NA	NA	
5a	NA	NA	NA	NA	_
5b	NA	NA	NA	NA	<u>``</u>
5c	410	NA	78	300	
5d	710	NA	120	360	φ.
5e	NA	NA	49	NA	\rightarrow
5f	62	NA	40	110	\rightarrow
5g	9.65	NA	NA	NA	\equiv
5h	53	NA	50	71	

5 - Building and implementing strategies with the industry: e.g. Nestle & PPG

Safety by design plastic testing

Safety by design: bioassay data on R&D food contact materials (FCM)

Hormone Activity Results by a panel of CALUX bioassays (Marin-Kuan, Behnisch, Szabo et al. 2023)

Erα CALUX											
Migration Sample	LAB A LAB B LAB C										
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C					
Positive Control											
Test Coating											
Uncoated Control											
Blank											

ERα 100%

	Anti-Era CALUX												
Migration Sample	LA	BA	LA	B B	LAB C								
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C							
Positive Control													
Test Coating													
Uncoated Control													
Blank													

Anti-ERa 92%

AR CALUX											
Migration Sample	LAI	LAB A LAB B									
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C					
Positive Control											
Test Coating											
Uncoated Control											
Blank											

Anti-AR CALUX												
Migration Sample	LA	B A	LA	B B	LAB C							
CALUX	LAB D	LAB C	LAB D	LAB C	LAB D	LAB C						
Positive Control												
Test Coating												
Uncoated Control												
Blank												

Anti-AR 75%

Concordance

Concordance Observed for 44 out of 48 Samples

AR 100%

No Concordance

Toxicological profiling of plastic additives for safe recycling practices

compound	Cytotox10%	ERa	ERa+S9	ERa-anti	ERb	ERb-anti	AR	AR-anti	PR	PR-anti	GR	GR-anti	TRb	RAR	LXR	PXR	PPARa	PPARg	R	РАН	Hifta	TCF	AP1	ESRE	NFkB	Nrf2	p21	p53 GENTOX	p53 S9 GENTO
Di(2-ethylhexyl)phthalate		-4.0								-5.2						-6.4													×
Di-n-octyl phthalate																													
monoethylhexyl phtalate	-3.5																-5.5	-4.7											
diisodecylphthalate		-4.4			-4.2																								
diisononylphthalate																												-3.0	
Dicyclohexylphthalate		-5.3								-5.4		-5.1				-6.7													
Diethylphthalate	-3.5	-4.3						-5.0		-4.3																			
Diisobutyl phthalate	-4.0	-5.7						-5.3		-5.5																			
Dibutylphthalate	-4.5	-5.2						-5.5		-5.5																			
Di(n-hexyl)phthalate	-3.5	-5.0						-5.0		-5.5									-4.0										
Butyl benzyl phthalate	-3.9	-6.4						-5.6		-5.5									-3.7										
di(2-ethylhexyl)adipate																													
Benzophenone	-3.5	-5.2						-6.0																					
Etyl paraben	-3.0	-5.2			-5.2			-5.0		-4.0																		-3.5	
4-tert-octylphenol	-5.5	-7.2			-8.5			-6.4		-6.1						-6.0													
4-n-octylphenol		-6.2						-5.6		-5.3																			
Nonylphenol		-5.1			-5.6			-6.5		-5.5																			
4-Cumylphenol		-7.0	-6.4		-7.0			-6.7		-6.1																			
p-(tert-pentyl)phenol	-4.0	-7.7						-6.3		-5.9																			
Diphenyl-p-phenylenediamine	-4.0	-5.5						-5.2		-5.4																			
Bisphenol A	-4.0	-7.3			-6.8			-6.8		-5.5																			
Bisphenol A-dimethacrylate		-6.6			-6.5			-6.0		-5.5						-5.3												-4.7	
Bisphenol F		-6.6			-6.7			-5.4		-4.8						-4.3													-3.3

FDCA - little or no endocrine effects

- biobased building block to replace terephthalate in PET

Green chemistry approach to select phthalate alternatives

Compound	Cytotox	ERa	AR-anti	PR-anti	GR-anti	TRb-anti	PPARa	PPARg	AhR	AP1	ESRE	Nrf2	p53 GENTOX	Can we select promising bio-based alternatives for phthalates, with reduced endocrine activity?						
Dimethyl phthtalate	-	-	-4.7	-3.6	-	-	-	-	-	-	-	-	-	Furan-based	counterparts	largely	lack			
Dimethyl-2,5-furandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-	endocrine activ	rity					
Diethyl phthalate	-3.5	-4.0	-5.0	-4.3	-	-	-	-	-	-	-	-	-							
Diethyl-2,5-furandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-		\bigcirc	_	\bigcirc			
														Phthalate dialkyl ester	$\rightarrow \sim \sim$	~^-	$\langle \rangle \sim \langle \rangle$			
Diisobutyl phthalate	-4.5	-5.3	-5.0	-5.0	-	-	-	-	-	-	-	-	-		DIBP		DEHP			
Diisobutyl-2,5-furandicarboxylate	-	-4.3	-	-	-	-	-	-	-	-	-	-	-			\sim				
														Euran-based counternart			Lo Lo-			
Di(2-ethylhexyl) phthalate	-	-3.9	-	-	-	-	-	-	-	-	-	-	-	ruran-based counterpart	DIBF		DEHF			
Di(2-ethylhexyl)-2,5-furandicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-							
Diisodecyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-							
Diisodecylfuran-2,5-dicarboxylate	-	-	-	-	-	-	-	-	-	-	-	-	-							

activity

Unknown chemicals "features" in non-target analysis – how to tackle them?

Combination of chemical compound with effectbased analysis!

Testing of plastic from packaging, toys and medical devices (Kirchnawy et al 2019)

More than 500 samples of different articles

Food packaging (bottles, cups, microwave packaging, caps), granulates, films,...), Toys (plastic, textile, wood), Medical Devices (implants, infusion bags,...)

Samples included various materials:

- Composite films, food cartons
- Polystyrene, Polyolefins, PET
- Paper board
- Metal cans
- Textile and wood toys
- PVC-toys

Testing of plastic from packaging, toys and medical devices (Kirchnawy et al 2019)

- >70% of all tested samples: no endocrine activity
- < 25% of all tested sample: estrogen activity
 - Detected activity is mostly much lower than the activities previously found in mineral water (<7 ng/L EEQ)
 - < 2%: activities between 50 100 ng/L EEQ
- Plastic Food Packaging: lower estrogen activity than would be expected based on previous studies
- Toys, Medical Device: more endocrine activity than in food packaging

Wake-up call by Martin Wagners team: In vitro toxicity of Bioplastics and Plant-based materials (Zimmermann et al 2020)

Combined chemical & effect-based NAMs

- In total, ca **41,000 chemical features** with 186–20,965 features were present in the individual samples.
- **80% of the extracts contained > 1000 features**, most of them unique to one sample.
- 343 priority compounds including monomers, oligomers, plastic additives, lubricants and non-intentionally added substances were identified
- Extracts from cellulose- and starch-based materials generally triggered a strong in vitro toxicity and contained most chemical features.
- The toxicological and chemical signatures of polyethylene (Bio-PE), polyethylene terephthalate (Bio-PET), polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), polylactic acid (PLA), polyhydroxyalkanoates (PHA) and bamboo-based materials varied with the respective product rather than the material.
- Toxicity was less prevalent and potent in raw materials than in final products. A comparison with conventional plastics indicates that bioplastics and plant-based materials are similarly toxic.

In vitro toxicity profiling of Plastic Consumer Products (Zimmermann et al 2021)

Article

pubs.acs.org/est

Plastic Products Leach Chemicals That Induce *In Vitro* Toxicity under Realistic Use Conditions

Lisa Zimmermann, Zdenka Bartosova, Katharina Braun, Jörg Oehlmann, Carolin Völker,^{||} and Martin Wagner^{*,||}

Cite This: Environ. Sci. Technol. 2021, 55, 11814–11823

Read Online

Table 1. Plastic Products Analyzed in this Study

sample	plastic product	FCM ^a
HDPE 1	bin liners	
LDPE 1	lemon juice bottle	+
LDPE 2	plastic wrap	+
LDPE 3	freezer bag	+
LDPE 4	hair conditioner bottle	
PS 1	yogurt cup	+
PS 2	fruit tray	+
PS 3	vegetable tray	+
PS 4	plastic cup	+
PP 1	yogurt cup	+
PP 2	gummi candy packaging	+
PET 1	oven bag	+
PVC 1	plastic wrap	+
PVC 2	placemat	
PVC 3	pond liner	
PVC 4	floor covering	
PUR 1	scouring pad	
PUR 2	kids bath sponge	
PUR 3	acoustic foam	
PUR 4	shower slippers	
PLA 1	yogurt cup	+
PLA 2	vegetable tray	+
PLA 3	shampoo bottle	
PLA 4	coffee cup lid	+

Migration of endocrine and metabolism disrupting chemicals from plastic food packaging (Stevens et al 2024)

Keywords: endocrine disruptor, food contact material, mixture toxicity, leachate toxicity, nontarget chemical analysis, nuclear receptor

5 - Building and implementing strategies with NGOs

PFAS in disposable food packaging and tableware: Effect-based testing by BDS

Throwaway Packaging, Forever Chemicals

European wide survey of PFAS in disposable food packaging and tableware

C C C	-
Contra I	
litka Straková • Julie Sch	neider • Natacha Cingotti

OIL-BEADING TAKEAWAY PAPER										
SAMPLE ID	TOF (mg/kg dw)	TOF (µg/ dm2 dw)	6:2 FTOH (ng/g)	6:2 FTS (ng/g)	10:2 FTS (ng/g)	% identified fluorine	TTR - FITC- activity (µg PFOA/g	T4	TTR - FITC-T4 LOQ (µg PFOA/g)	
DE-PAP-KFC-17a	770	247	528	<loq< td=""><td><loq< td=""><td>0.047</td><td>341</td><td></td><td>26</td></loq<></td></loq<>	<loq< td=""><td>0.047</td><td>341</td><td></td><td>26</td></loq<>	0.047	341		26	
FastF-FR-5	700	215	706	<loq< td=""><td><loq< td=""><td>0.068</td><td>220</td><td></td><td>29</td></loq<></td></loq<>	<loq< td=""><td>0.068</td><td>220</td><td></td><td>29</td></loq<>	0.068	220		29	
FastF-FR-3	670	224	192	39.5	104	0.033	NA		-	
DE-PAP-NRDS-19a	640	291	234	<loq< td=""><td><loq< td=""><td>0.025</td><td>NA</td><td></td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.025</td><td>NA</td><td></td><td>-</td></loq<>	0.025	NA		-	
FastF-FR-2	530	351	219	<loq< td=""><td><loq< td=""><td>0.028</td><td>NA</td><td></td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.028</td><td>NA</td><td></td><td>-</td></loq<>	0.028	NA		-	
DE-PAP-DDNT-20a	510	270	194	<loq< td=""><td><loq< td=""><td>0.026</td><td>NA</td><td></td><td>-</td></loq<></td></loq<>	<loq< td=""><td>0.026</td><td>NA</td><td></td><td>-</td></loq<>	0.026	NA		-	
FasF-UK-5a	480	157	16.9	<loq< td=""><td><loq< td=""><td>0.0024</td><td>39</td><td></td><td>19</td></loq<></td></loq<>	<loq< td=""><td>0.0024</td><td>39</td><td></td><td>19</td></loq<>	0.0024	39		19	
CZ-FCM-KFC-06	480	134	634	<loq< td=""><td><loq< td=""><td>0.090</td><td>69</td><td></td><td>33</td></loq<></td></loq<>	<loq< td=""><td>0.090</td><td>69</td><td></td><td>33</td></loq<>	0.090	69		33	
CZ-FCM-MCD-01b	470	176	335	<loq< td=""><td><loq< td=""><td>0.048</td><td>52</td><td></td><td>16</td></loq<></td></loq<>	<loq< td=""><td>0.048</td><td>52</td><td></td><td>16</td></loq<>	0.048	52		16	
FastF-UK-2	440	177	<loq< td=""><td><loq< td=""><td>34.4</td><td>0.0050</td><td>60</td><td></td><td>30</td></loq<></td></loq<>	<loq< td=""><td>34.4</td><td>0.0050</td><td>60</td><td></td><td>30</td></loq<>	34.4	0.0050	60		30	
CZ-FCM-BB-01b	400	400	345	<loq< td=""><td><loq< td=""><td>0.059</td><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>0.059</td><td>NA</td><td></td><td></td></loq<>	0.059	NA			
FastF-UK-4	390	125	248	<loq< td=""><td><loq< td=""><td>0.043</td><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>0.043</td><td>NA</td><td></td><td></td></loq<>	0.043	NA			
DE-PAP-MCD-26	370	159	132	<loq< td=""><td><loq< td=""><td>0.024</td><td>180</td><td></td><td>26</td></loq<></td></loq<>	<loq< td=""><td>0.024</td><td>180</td><td></td><td>26</td></loq<>	0.024	180		26	

6 - International strategies for safer life cycle assessment LCA

(UNEP 2024)

substances, including (1) break-dow

Chemicals of concern in plastics are found across various sectors and

have 4. A selection of in this alsosably that have been abeen in this research (Noster et al. 2010).							
Potential endocrine activity	Cytotoxicity	Genotoxicity/potential carcinogenicity					
Oestrogen receptor (ER) redistribution Androgen receptor (AR) redistribution	Cell Organelle Health (COH); end points: DNA content, cytochrome C, mitochondrial membrane potential, RNA synthesis kinetic inhibition.	Indicator assays for genotoxicity (PARP, GADD45,), Cornet-FPG assay					
Transcriptional activation assay Oestrogen receptor (ER) (anti) Androgen receptor (AR) Glucocorticoid receptor (GR) Progesterone receptor (PR) Thyroid recepted (TR) Peroxisome Proliferator Activated Receptor (PPARy)	Cell Proliferation and Cell Death (CPD); end points: apoptosis – caspase3, p53; DNA content, DNA proliferation – BrdU	Mutagenicity test (Ames test, mammalian cell gene mutation tests, micronucleus (MN) test) Potential carcinogenicity Cell Transformation Assay (detection of both geno- and non-genotoxic carcinogens)					
H295R Steroidogenesis assay (changes in hormone production)							

A selection of in vitro bioaccave that have been used in NIAS research (Koster et al. 2016

SOLUTIONS to move FORWARD

Update regulatory testing guidelines, for instance by including rapid and cost-effective approaches such as bioassays and computational tools. This serves as a prerequisite for research to fill existing knowledge gaps, e.g., regarding the mixture toxicity of leachates from plastics or the toxicity and bioaccumulation potential of hydrophobic chemicals.

One option to assess the overall toxicity of chemicals released from plastic products is to test the overall extract/leachate using in vitro bioassays, which are rapid and cost-effective (Groh and Muncke 2017), and use other screening technologies that measure relevant toxicological effects such as cytotoxicity, genotoxicity and endocrine effects (Table 4) (Koster et al. 2016). The AOP approach (see section 4.1.2) can

Global Plastic pellets monitoring (UNEP 2024)

High through-put extraction of plastic

A) THF/hexane:

- 0.5 gr plastic, milling,
- add 10 ml THF, shake 20 min,
- add dropwise 2 x 10 ml hexane, combine,
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

B) 50% Ethanol/Water:

- 0.5 gr plastic, milling,
- add 10 ml EtOH/Water (50%), put in oven at 60 ° C for 3 days
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

C) 20% Ethanol/Water:

- 0.5 gr plastic, milling,
- add 10 ml EtOH/Water (20%), put in oven at 40 $^\circ$ C for 1 day
- add 50 ul DMSO, evaporate to a final volume of 50 ul.

In vitro toxicity profiling by CALUX panel:

Overview all samples

Sample			CALUX bioassay			
code	CALUA DIDASSAY					
	Cytotox	P53	PAH	ERa	Anti-AR	
code	(µg Tributyltin acetate eq./					
	gram product)					
N3 Nigeria: THF/hexane	41	LOQ (<0.28)	2000	LOQ (<0.13)	LOQ (<8.3)	
N9 Nigeria: THF/hexane	32	LOQ (<0.28)	610	LOQ (<0.13)	LOQ (<8.3)	
N22 Nigeria PVC: THF/hexane	1.6	LOQ (<0.11)	45000	5.7	390	
N24 Nigeria PP: THF/hexane	16	LOQ (<0.084)	1500	LOQ (<0.034)	12	
N24 Nigeria PP: 50% ethanol/ H ₂ 0	LOQ (<0.34)	LOQ (<0.0096)	3200	0.16	10	
N22 Nigeria PVC: 20% ethanol/ H ₂ 0	1.1	LOQ (<0.096)	470	0.044	2.8	
N9 Nigeria: 50% ethanol/ H ₂ 0	0.34	LOQ (<0.029)	600	0.47	14	
N3 Nigeria: 50% ethanol/ H ₂ 0	0.55	LOQ (<0.027)	7000	LOQ (<0.044)	LOQ (<4.0)	
UNEP046_3/Arg 1_3: 20% ethanol/ H ₂ 0	LOQ (<0.87)	LOQ (<0.026)	1.8	LOQ (<0.071)	LOQ (<9.3)	
UNEP070_4_3/IND13_4: 20% ethanol/ H20	LOQ (<0.94)	LOQ (<0.026)	LOQ (<0.86)	LOQ (<0.074)	LOQ (<9.3)	
UNEP065_4/Viet 2_4: 20% ethanol/ H ₂ 0	LOQ (<0.94)	LOQ (<0.026)	LOQ (<0.86)	LOQ (<0.074)	LOQ (<9.3)	
UNEP064_6/Arg 1_6: 50% ethanol/ H ₂ 0	LOQ (<0.87)	LOQ (<0.026)	LOQ (<0.86)	LOQ (<0.079)	LOQ (<7.3)	
UNEP070_6/IND13_6: 50% ethanol/ H20	LOQ (<0.94)	LOQ (<0.029)	14	LOQ (<0.091)	45	
UNEP071_6/IND24_6: 50% ethanol/ H ₂ 0	LOQ (<0.90)	LOQ (<0.027)	LOQ (<0.61)	LOQ (<0.087)	LOQ (<8.8)	
UNEP065_6/Viet 2_6: 50% ethanol/ H ₂ 0	LOQ (<0.90)	LOQ (<0.027)	2.8	LOQ (<0.079)	LOQ (<11)	
UNEP066_6/Viet18_6: 50% ethanol/ H ₂ 0	LOQ (<0.90)	LOQ (<0.027)	12	LOQ (<0.078)	LOQ (<11)	
UNEP067_6/Viet 22_6: 50% ethanol/ H ₂ 0	LOQ (<0.92)	LOQ (<0.028)	1.4	LOQ (<0.077)	LOQ (<9.9)	
UNEP064_7/Arg 1_7: THF/hexane	LOQ (<0.85)	LOQ (<0.027)	490	0.17	LOQ (<9.2)	
UNEP070_7/IND13_7: THF/hexane	LOQ (<0.87)	LOQ (<0.027)	LOQ (<0.89)	LOQ (<0.091)	18	
UNEP071_7/IND24_7: THF/hexane	LOQ (<0.98)	LOQ (<0.027)	41	LOQ (<0.095)	LOQ (<11)	
UNEP065_7/Viet 2_7: THF/hexane	LOQ (<0.94)	LOQ (<0.027)	1.3	LOQ (<0.095)	LOQ (<11)	
UNEP066_7/Viet 18_7: THF/hexane	LOQ (<0.94)	LOQ (<0.027)	LOQ (<1.2)	0.30	LOQ (<9.1)	
UNEP067_7/Viet 22_7: THF/hexane	LOQ (<0.98)	LOQ (<0.028)	130	LOQ (<0.087)	11	
BW_2: 20% ethanol/ H20	LOQ (<0.92)	LOQ (<0.028)	LOQ (<0.91)	LOQ (<0.075)	LOQ (<9.9)	
BW_6: 50% ethanol/ H20	LOQ (<0.92)	LOQ (<0.028)	LOQ (<0.91)	LOQ (<0.084)	LOQ (<7.7)	
BW_7: THF/hexane	LOQ (<0.92)	LOQ (<0.028)	LOQ (<0.85)	LOQ (<0.077)	LOQ (<9.9)	

Overview in vitro toxicity profiling of plastic

Current EU projects BDS involved: RISKHUNTER3R Safe & Sustainable by Design

. .

RISK[::::] HUNT3R

RISK assessment of chemicals integrating HUman centric Next generation Testing strategies promoting the 3Rs

www.risk-hunt3r.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964537.

Current EU project BDS involved CHAMPION Test strategies for safer bio-based polymers

Circular High-performance Aza-Michael Polymers as Innovative materials Originating from Nature

CHAMPION aims to replace conventional polymers with novel and sustainable bio-based polymers for their application in coatings, textiles, home care uses and structural adhesives.

The majority of conventional polymers are not fit for recycling and end up being incinerated or landfilled. Novel CHAMPION bio-based polymers, resulting from the aza-Michael addition reaction, are expected to be suitable replacements for polymers used in resistant kitchen counter coatings, laundry detergents and other homecare products, car interior surfaces, and structural adhesives. Recovery, chemical recycling and organic recycling are the end-of-life options planned for the design of products using CHAMPION polymers.

CHAMPION Objectives

- Produce a library of + 50 novel bio-derivable and bio-degradable materials
- Test CHAMPION polymers for home care formulation additives, structural adhesives, coatings and automotive interior surfaces
- Increase resource efficiency and reduce GHG emissions with novel polymers
- Evaluate polyester candidates in environmental, social and economic terms
- Establish an innovative testing strategy to evaluate toxicological safety

Take home message for Toxic-free Sustainable Materials in the Circular Economy

- For a SAFER & SUSTAINABLE approach complex mixtures of known and unknown chemicals in plastic and bioplastics need to be monitored by a COMBINED chemical AND effect-based biological toxicity screening tests (e.g., OECD TG455 and TG458)!
- Safe design/Green chemistry using in vitro toxicity is already in many R&D applications for all kinds of plastic materials used, but international regulatory framework is missing!
- High-throughput bioassays are used decades already for chemicals testing, why not using also for safer SUSTAINABLE PLASTIC testing following industrial and NGO global leaders...

Invitation for 14th BioDetectors Conference

Safe & sustainable materials

Happy to answer your questions

CONTACT:

Dr. Peter A. Behnisch

Behnisch@bds.nl

